Data Analysis
Intelligent data processing and analysis using SkinFlow's multi-agent system.
Overview
This example demonstrates how to build intelligent data analysis workflows that can process various data types, generate insights, and create reports.
Capabilities
- Data Ingestion: Handle multiple data formats (CSV, JSON, Excel, databases)
- Data Cleaning: Automated data preprocessing and quality checks
- Statistical Analysis: Generate descriptive and inferential statistics
- Pattern Recognition: Identify trends, anomalies, and correlations
- Report Generation: Create comprehensive analysis reports and visualizations
- Predictive Modeling: Build and evaluate predictive models
Use Cases
- Business Intelligence: Sales analysis, customer segmentation, market trends
- Financial Analysis: Portfolio analysis, risk assessment, fraud detection
- Scientific Research: Experimental data analysis, hypothesis testing
- Operational Analytics: Process optimization, performance monitoring
- Customer Analytics: Behavior analysis, churn prediction, satisfaction metrics
Setup
bash
cd examples/data-analysis
npm install
cp env.example .envBasic Usage
Simple Data Analysis
javascript
import { createMultiAgentFramework } from 'skingflow'
const framework = await createMultiAgentFramework({
llm: {
provider: 'openai',
apiKey: process.env.OPENAI_API_KEY,
model: 'gpt-4'
}
})
// Analyze sales data
const result = await framework.processRequest(
"Analyze this sales data and identify key trends, outliers, and insights",
{
userId: 'data-analyst',
context: {
dataType: 'sales',
timePeriod: 'Q1-2024',
metrics: ['revenue', 'units_sold', 'customer_acquisition']
}
}
)Advanced Analysis Workflow
javascript
// Define comprehensive analysis workflow
const analysisWorkflow = {
dataSources: ['sales.csv', 'customer_data.json', 'market_trends.xlsx'],
objectives: [
'identify_growth_opportunities',
'analyze_customer_behavior',
'detect_seasonal_patterns',
'predict_future_trends'
],
deliverables: [
'executive_summary',
'detailed_findings',
'visualizations',
'recommendations'
]
}
const result = await framework.processRequest(
`Execute comprehensive data analysis: ${JSON.stringify(analysisWorkflow)}`,
{ userId: 'business-intelligence-team' }
)Data Processing Pipelines
Data Ingestion and Cleaning
javascript
// Automated data preprocessing
const preprocessingResult = await framework.processRequest(
"Clean and preprocess this dataset for analysis",
{
userId: 'data-engineer',
context: {
rawDataset: salesData,
requirements: {
handleMissingValues: true,
normalizeFormats: true,
removeOutliers: true,
standardizeColumns: true
}
}
}
)Statistical Analysis
javascript
// Generate comprehensive statistics
const statsResult = await framework.processRequest(
"Perform statistical analysis and generate descriptive statistics",
{
userId: 'statistician',
context: {
dataset: cleanedData,
analysisTypes: [
'descriptive_statistics',
'correlation_analysis',
'trend_analysis',
'distribution_analysis'
]
}
}
)Pattern Recognition
javascript
// Identify patterns and anomalies
const patternResult = await framework.processRequest(
"Identify patterns, trends, and anomalies in this data",
{
userId: 'ml-specialist',
context: {
data: timeSeriesData,
methods: [
'time_series_analysis',
'anomaly_detection',
'clustering',
'classification'
]
}
}
)Advanced Analytics
Predictive Modeling
javascript
// Build predictive models
const predictionResult = await framework.processRequest(
"Build and evaluate predictive models for forecasting",
{
userId: 'data-scientist',
context: {
historicalData: salesHistory,
targetVariable: 'revenue',
timeHorizon: '6_months',
modelTypes: ['linear_regression', 'random_forest', 'neural_network']
}
}
)What-If Analysis
javascript
// Scenario analysis
const scenarioResult = await framework.processRequest(
"Perform what-if analysis and scenario modeling",
{
userId: 'business-analyst',
context: {
baseModel: predictiveModel,
scenarios: [
{ name: 'optimistic', changes: { market_growth: '+20%' } },
{ name: 'pessimistic', changes: { market_growth: '-10%' } },
{ name: 'realistic', changes: { market_growth: '+5%' } }
]
}
}
)Visualization and Reporting
Automated Chart Generation
javascript
// Generate data visualizations
const vizResult = await framework.processRequest(
"Create appropriate visualizations for this analysis",
{
userId: 'data-visualizer',
context: {
analysisResults: comprehensiveAnalysis,
visualizationTypes: [
'time_series_charts',
'correlation_matrices',
'distribution_plots',
'comparative_analyses'
],
outputFormat: 'interactive_dashboard'
}
}
)Report Generation
javascript
// Generate comprehensive reports
const reportResult = await framework.processRequest(
"Create a comprehensive analysis report with executive summary",
{
userId: 'business-intelligence',
context: {
findings: analysisResults,
audience: 'executives',
reportStructure: [
'executive_summary',
'methodology',
'key_findings',
'recommendations',
'appendix'
]
}
}
)Real-time Analysis
Streaming Data Processing
javascript
// Real-time data analysis
async function processStreamingData(dataStream) {
for await (const dataPoint of dataStream) {
const analysis = await framework.processRequest(
"Analyze this streaming data point and detect anomalies",
{
userId: 'real-time-analyst',
context: {
currentData: dataPoint,
historicalContext: recentData,
thresholds: anomalyThresholds
}
}
)
// Handle real-time insights
if (analysis.anomalyDetected) {
triggerAlert(analysis)
}
}
}Integration Examples
Database Integration
javascript
// Connect to databases for analysis
const dbAnalysisResult = await framework.processRequest(
"Analyze data from the database and generate insights",
{
userId: 'database-analyst',
context: {
connectionString: process.env.DB_CONNECTION,
query: "SELECT * FROM sales WHERE date >= '2024-01-01'",
analysisType: 'sales_performance'
}
}
)API Integration
javascript
// Integrate with external data sources
const apiAnalysisResult = await framework.processRequest(
"Fetch and analyze data from external APIs",
{
userId: 'api-analyst',
context: {
apiEndpoints: [
'https://api.example.com/market-data',
'https://api.example.com/customer-data'
],
analysisGoals: [
'market_trends',
'customer_segments',
'competitive_analysis'
]
}
}
)Best Practices
- Data Quality First: Always validate and clean data before analysis
- Define Clear Objectives: Know what insights you're seeking
- Use Appropriate Methods: Match analysis techniques to data types
- Validate Results: Cross-check findings with multiple approaches
- Document Process: Maintain analysis methodology and assumptions
Performance Optimization
Processing Optimization
- Use streaming for large datasets
- Implement parallel processing where possible
- Cache intermediate results
- Optimize query performance
Resource Management
- Monitor memory usage for large datasets
- Implement timeout mechanisms
- Use efficient data structures
- Scale horizontally for distributed processing
Security Considerations
- Data Privacy: Ensure compliance with data protection regulations
- Access Control: Implement proper authentication and authorization
- Data Encryption: Protect sensitive data in transit and at rest
- Audit Logging: Maintain analysis activity logs
Troubleshooting
Common Issues
- Data Quality Problems: Implement robust validation and cleaning
- Performance Issues: Optimize algorithms and use caching
- Memory Constraints: Use streaming and chunked processing
- Model Accuracy: Validate with test datasets and adjust parameters
Debugging Tools
javascript
// Analysis debugging
const debugResult = await framework.processRequest(
"Debug this analysis and identify issues",
{
userId: 'debug-specialist',
context: {
analysisProcess: currentAnalysis,
inputData: rawData,
expectedOutput: targetResults,
actualOutput: currentResults
}
}
)Related Examples
- Intelligent Assistant - General AI assistant for analysis tasks
- Content Creation - Analysis report generation
- Quick Start - Basic framework setup
Next Steps
- Explore custom tools for domain-specific analysis
- Implement real-time monitoring dashboards
- Set up automated reporting and alerting systems
- Integrate with business intelligence platforms